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THE TORSION PROBLEM OF A DISK
BONDED TO A DISSIMILAR SHAFTt

F. ERDOGAN and G. D. GUPTA

Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania

Abstract-The torsion of an infinitely long elastic shaft bonded to an elastic disk of finite width and of different
elastic constants is considered. The contact may be accomplished through bonding or shrink-fit. First the general
problem with the axisymmetric edge cracks on the contact area is formulated. This problem is shown to reduce to a
singular integral equation with a simple Cauchy-type singularity. In limit, when the contact is along the entire
width of the disk, it is shown that the dominant kernel of the integral equation is of generalized Cauchy-type
and the solution has a singularity of the form (e 2

- x 2
) - Y, where 2e is the width of the disk and 0 < Y< !. A series

of numerical examples is worked out with or without the edge cracks and under symmetric and anti-symmetric
external loads. A variation of the torsion problem, namely, the problem of two semi-infinite strips under anti-plane
shear loading is then considered. Again, the results of a series of numerical examples are given to show the effect
of the geometry and the material properties on the stress intensity factor.

J. INTRODUCTION

IN THIS paper we consider the problem of load transfer from an elastic shaft to an elastic
circular disk (Fig. 1). The external loads are assumed to be torques, circumferential body
forces, or circumferential tractions applied to the disk and the shaft in an axially symmetric
manner. That is, the problem is one of torsion. The outer radius ofthe disk and the length of
the shaft are sufficiently large in comparison with the radius of the shaft and the thickness of
the disk so that, in formulating the problem it will be assumed that these dimensions are
infinite. The contact between the disk and the shaft may be accomplished through shrink
fit or bonding. In either case only the torsion problem under the condition of perfect
adhesion will be considered.

The special case of infinitely wide disk was considered in Ref. [1]. In this paper first it
will be assumed that the thickness of the disk 2b is greater than the length 2e of the contact
area in x direction (Fig. 1). The configuration without the edge notches, i.e. the case of
b = e, will then be considered. In presenting the numerical results the emphasis will be on
the evaluation of the stress concentration as a function of the relative dimensions, b/e and
a/e, and the modulus ratio J1.2/J1.1' where a is the radius of the shaft and J1.1 and J1.2 are,
respectively, the shear moduli of the shaft and the disk. The problem will be solved under
symmetric and anti-symmetric loading conditions. In the former case p(x) = p( -x) and
in the latter p(x) = - p( - x), where p(x) = 'ria, x) is the contact stress. The solution under
a more general axisymmetric (torsional) loading may be obtained as a proper super
position of these two solutions.

In the special case ofinfinite shaft radius the problem reduces to one ofanti-plane shear.
The solution of this problem will be given under the more general condition that the
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FIG. I. The geometry of the circular shaft bonded or shrink-fit to a disk.

thicknesses of both materials are finite (Fig. 2). It should be pointed out that in both
problems, since under the symmetric loading x = 0 is a plane of symmetry on which the
traction 'iOz (i = 1,2) vanishes, the symmetric solution given in this paper is valid also
for one half of the composite media shown in Figs. l(a) and 2 [see, for example, Fig. l(b)].

2. DERIVATION OF THE INTEGRAL EQUATIONS

Consider an infinitely long shaft of radius a and shear modulus J.l.I bonded or shrink-fit
to an infinite disk of width 2b and shear modulus J.l.2 (Fig. 1). Let the axial length of the
contact area be 2c where c ::; b. Let all the external loads act in O-direction and be dis
tributed in an axially symmetric manner. Thus, the problem is one of torsion and the
O-components ul(r, x) and u2(r, x) of the displacement vectors in the shaft and the disk,

y

r----=:::a..--l..--e::=-;.:......,-- X

FIG. 2. Bonded semi-infinite strips under anti-plane shear loading.
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respectively, are the only unknown functions, which satisfy the following differential
equation:

(i = 1, r < a; i = 2, r > a). (1)

It will be assumed that the torsion problems for the disk and the shaft have been sepa
rately solved under the external loads applied to the disk and the shaft by ignoring the
adhesion between the two materials. Let u?(r, x), (i = 1,2) be the displacements correspond
ing to these solutions, and let

a
J(x) = - a)ug(a+O, x)-u?(a-O, x)], (-c < x < c). (2)

(3)(-c<x<c)

The final solution will then be u? +ui , (i = 1, 2) where uland Uz are the displacements
obtained from (1) under the following boundary and continuity conditions;

a
a)uz(a+0,x)-u1(a-0, x)] J(x),

! lr8(a, x) = ! Zre(a, x) = p(x), ( - c < x < c)

!lr8(a, x) =0, Ixl>c

!zre(a, x) = 0, c < Ixl < b

!Z8x(r, +b) = 0, (r> a)

fc 2na
Z
p(x) dx = C.

(4)

(5)

(6)

(7)

(8)

(9)1,2).(i

Here p(x) is the (unknown) interface shear stress and C is the torque transmitted from the
shaft to the disk. The two nonvanishing components of the stress vector are given by

(
au. u.)

tire = J.1.i a; ---;: ,
Since x = 0 is a plane of geometric symmetry, by writing

Jl(X) = (J(X) - J( - x)]/2, Jz(x) = (J(x) +J( - x)]/2.
(10)

(11)

The solution can be expressed as the sum of a symmetric solution, uJr, x) = ui(r, -x),
(i = 1,2), p(x) p( - x) obtained from (IH9) by using the input Jl(X) and C, and an anti
symmetric solution, ui(r,x) = -uir, -x), (i = 1,2), p(x) = -p(-x) obtained from the
input function Jz(t).

The solution of (I) for the shaft and the disk satisfying the conditions of regularity at
r = 0 and r 00, respectively, may be expressed as

2 1
00

Ul(r, x) = - A(a)Il(ar)~?~(ax)da
n 0

00

uz(r, x) = I BnK 1(anr)~?~(anx)
1

(12)
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where the function A(IX) and the constants Bn are unknown and the cosine and sine kernels
correspond to the symmetric and the anti-symmetric problems, respectively. From (7),
(9) and (12) we find

{

nn/b, (symmetric problem), (n = 1,2, ...)
IX = (13)

• (2n-l)n/2b (anti-symmetric problem), (n = 1,2, ...).

From (11), (12) and (9), the boundary conditions (3H6) may now be expressed as

(14)

= p(x), (Ixl < c) (15)

2)11 foo {cos IXX}- A(IX)IXI2(lXa). dlX = 0,
n 0 SiD IXX

(Ixl > c) (16)

(c < Ixl<b). (17)

The dual series-integral equations (l4HI7) may easily be reduced to a singular integral
equation for the unknown function p(x) as follows: first from (15HI?) we obtain

1 IC

{cos at}aA(a) = p(t). dt
/11 1Z(aa) 0 smat

(18)

2 f" {cos a.t}anB. = - p(t). dt.
b/12K z{ana) 0 sm ant

Then, substituting (18) into (14) and using the symmetry property of p(t) we find

1 IC
00 K 1(anr) . . 1 IC foo 11(ar) .

lim -b p(t) dt I K ) sm a.(t - x) + hm - p(t) dt -(-)SiD a(t - x) da
r~a+O /12 -c 1 2(a.a r~a-O 1t/11 -c 0 l Z aa

(19)(Ixl < c).{
-fl(X)

= -fix)

Equation (13) is still valid for IX. appearing in (19). Note that for b ---+ 00, l/b - dlX/n and the
kernel in the first term of(19) reduces to that found in Ref. [1].

For t = x the kernels in (19) are divergent. To separate these singular parts ofthe kernels
we let r = a+e in the first term and r = a - e in the second term of (19), where e is a small
positive constant and note that for large values of IX and an

(20)
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We now add and subtract (20) to the integrands in (19) and use the following relations to
evaluate the singular kernels [2, 3]

fc foo fC (t)lim p(t)dt e-O"sinct(t-x)dct= Ldt.-0 -c 0 -c t-x

~ _ pn· 1 _ sin ;.
'T e sm An - 2(ch P-cos;')'

Making use of (21), (19) may be expressed as

1 c () c Icot~(t-X») c

f p~ dt+
2

fJ

b
1 f pet) dt+ f p(t)k(t, x) dt

TC -c t X fJ2 -c TC ( -c
cosec 2b t-x)

{
- fJt!l(X)

(Ixl < c)
- - fJt!2(X)'

1 (00 (1 1(lXa) ).
k(t, x) = ~Jo 1

2
(cta)-1 smct(t-x)dlX

fJ1 ~ (K 1(ctna) ).
+-b L, K ( ) 1 sm IXn(t- x).

fJ2 1 2 IXna

(21)

(22)

(23)

The kernel given by (23) is bounded for all values of t and x in (-e, c) where, because of
uniform convergence, the limit can be (and is) put under the integral and summation
signs.

For b > e the kernel in the second term of(22) has a singularity of the form l/(t- x), and
hence (22) is a simple singular integral equation. In this case the function pet) has an integrable
singularity at =+= e of the form (e2 - t2

) -1/2. The case ofb = e will be discussed in Section 4.
In either case, (22) must be solved subject to the condition (8).

3. INTEGRAL EQUATION FOR BONDED STRIPS

The formulation given in the previous section may be used to derive the integral
equation for the anti-plane shear problem of two bonded semi-infinite strips shown in
Fig. 2. For a -+ 00 the Fredholm kernel, k(x, t) given by (23) vanishes, and (22) gives the
integral equation for a strip bonded to a half plane. If the width of the medium 1 is also
finite, (22) may easily be modified as follows:

u!-f P(t){cot2~1 (t-x)jdt+
2b

1 f P(t){cot2~2(t-X) jdt
1J1.1 -c cosec2~1(t-X) 2J1.2 -c cosec2~2(t-X)

= {-f1(X) (Ixl < c) (24)
-flex)
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where, again, the upper and lower kernels and the right-hand side correspond to symmetric
and anti-symmetric problems, respectively. For b l > e, bz > e, the kernel of (24) has a
Cauchy-type singularity. Thespecialcasesofb l = e < bzandb l = e = bzwillbediscussed
in the next section. The integral equation (24) will be solved subject to the following con
dition

(25)f,.r(t) dt P

where P is the resultant anti-plane shear load per unit thickness in z-direction (Fig. 2).

4. THE CASE OF b = c

Referring to Fig. 1, if there are no edge cracks on the interface, that is, if b = c, the kernels
in the second term of (22) become unbounded at t - x = +2e, as well as at t = x. Thus,
separating the singular parts, these kernels may be expressed as

1 n 1( 1 1 I)cot ~(t x) = - ---+--+-- +kdx, t),
2e 2e n t - x t - zit - zz

1 n I( 1 1 1)
cosec~(t-x) = - ~-----~- +kz(x,t),

2c 2c n t - x t zit - Zz
(26)

Zl = x-2e, Zz x+2e, -3e < Zl < c,e < Zz < 3e,

(27)(-c<x<c)

where k l and kz are bounded in the closed interval [ -c, c]. Substituting from (26) into (22),
the integral equation for the symmetric problem becomes

Ifc (I A ),)p(t) -+--+-- dt = F(x),
n -c t-x t-z i t-zz

where

A = 1lt!(1l1 +JlZ)

F(x) = -Allzfl(X)-Af
c

[IlZ k(x, t)+kl(x, t~ p(t) dt.
-c III J

(29)

Since k and k j are bounded and p is integrable, F(x) is a bounded function in the closed
interval [ - c, c].

We will now assume that p(t) has an integrable singularity at t +e, and can be
expressed as follows [4, chapter 4J:

g(t) g(t) eJl:iy
p(t) (ItI < c) (28)

(c z - tZ)Y (t - c)Y(t +c)Y'

where y = ('J. + ifJ, 0 < ('J. < 1, g(t) satisfies a Holder condition in the closed interval - c
::; t ::; e, and (tz - eZy is any definite branch which varies continuously on - c < t < c.
Consider the following sectionally holomorphic function

I IC p(t) I r g(t) eJl:iy dt
</>(z) = n _ct_~dt = ;-Lc(t-c)Y(t+c)y(t-z)'
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Following [4, chapter 4J, after examining the singular behavior of ¢(z) near the end points
=+= e it may be expressed as

g( - e) e"iy 1 gee) 1
¢(z) = ------ . --+¢o(z). (30)

(2eV sin ny (z + e)Y (2eF SIn ny (z - eV

The function ¢o(z) is bounded everywhere with the exception of the end points =+= e near
which it has the following behavior:

k 1,2, (Xo < iX, (31)

where Ck and (xo are real constants. In particular, for z = x, - e < x < c we have [4J

¢(x) = ~IC

p(t) dt = g( -e) cot ny _1(e) e"iy cot ny
. TI: -c t-x (2eY (x+e)Y (2e)Y (x-eF

+¢*(x), (-e < x < e).

Near the end points ¢*(x) behaves as

¢*(x) =.¢t*(x) , (k 1,2),
Ix-ed~o

(32)

(33)

where ¢t*(x), (k = 1,2) satisfies a Holder condition near and at the ends x = =+= e.
Note that the points z1 and z2 are outside the cut - e < x < e. Hence at z1 and z2

¢(z) is holomorphic and may be expressed as

g( -c) 1 1
= ----.----+¢ICx-2e).

(2eF SIn TI:}' (e-xy

gee) 1 1
= -- --.- --+¢2(x+2e).

(2eF SIn ny (e+xF

(34)

(35)

The behavior of¢1 near Zl = -eand that of ¢2 near Z2 = e are given by (3l), elsewhere on
the cut ¢1 and ¢2 are bounded.

Substituting from (29), (32), (34) and (35) into (27) we obtain

g( -e) cot ny _~~.0. cot ny +¢*(x)+),g( -e) _1 1_ +)'¢1(x-2e)
(2e)Y (e+xV (2e)Y (e-xV (2eF sin TI:}' (e-xV

gee) 1 1 ,
-..1.(2 )Y' (-)).+A¢2(x+2e) = F(x),e SIn ny e+x

(Ixl < e). (36)

Here, we recall that (27) was expressed for the symmetric problem, that is, pit) = p( - t)
or g(t) = g( - t). Using this symmetry property and noting that g(t) =1= 0 at t = =+=c, from
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(36) first by multiplying through (c + x)Y and substituting x = - e, and then by multiplying
through (c - x)Y and substituting x = c we find

g(c) (cot n"--)-) = 0
(2c)Y I sin n}!

or

cos ny = I,. (37)

(38)(lxl < I)

From (37) it is seen that the power of the singularity, )' is a real constant. The range of) is
0< }, = f.11/(f.11 +f.12) < 1, giving 0 < ~. < t· The well-known limiting cases are }' = 1for
(f.121f.1d =x;, and )' = 0 for (f.121f.1d = O.

In the anti-symmetric problem, from (22) and (26) it follows that on the left-hand side of
(27) and (36) the sign of ) will be negative and the right-hand side will be replaced by
another bounded function. However, in this case p(t) = - p( - t) or g(c) = - g( - C), giving
again (37) as the characteristic equation for I'.

In the bonded strips (Fig. 2), the comparison of (24) and (22) indicates that for hI > e.
h2 = e the dominant part of (27) remains unchanged; hence, (37) is still valid. In addition
to h2 = e if we also let h, = e, from (24) and (26) we find

(
I I) I JC (I I I) {FI (x)-+- p(t) -----±--±-.. dt = . .

f.11 f.12 n -c t-x t-z l t-Z2 r2(X)

where FI and F2 are bounded in the closed interval Ixl :::;: e. Thus, from (27), (38) and (37)

it is seen that, in this case cos n}' = I, or }' = 0, meaning that at x = =+= e, y = 0 the stresses
are bounded.

If h > e in Fig. I and (22), and hI > e, h2 > e in Fig. 2 and (24), the only singular parts
of the cotangent and cosecant kernels will be I/n(t - x). As a result, both in the symmetric
and in the anti-symmetric problem the dominant part of the integral equation (27) will
have only the simple Cauchy kernel I/(t-x). In this case, following the analysis (27)-(37),
instead of (37) we obtain the characteristic equation giving i' as

cot ni' = 0, )' = t (39)

which is the well-known result [5].

5. SOLUTION OF THE INTEGRAL EQUATIONS

To solve the integral equations (22) and (24), we will first normalize the dimensions with
respect to e by introducing the following quantities:

r = tic, ( = xle, u = O:C~

aO = ale, ho = ble, blo = bIle, b20 = b21c,
p(t) = p(er) = ¢(r), ,Ux) = Si(), (j = 1,2).

(40)

Thus, for the symmetric problem, and for h > e (22) may be expressed as

I JI ¢(r) dr J'- ~+ h«(,r)¢(r)dr=-f.12Asl(~)'
n -1 r '> -I

(I~I < 1) (41)



The torsion problem of a disk bonded to a dissimilar shaft 101

where

h(e, r) = A[_I-cot~(r-e)-! ~1~J +~k(cr,ce)
2bo 2bo nr-e /11+/12

A = /1t!(/11 +/12)'

Equation (41) will be solved subject to the equilibrium condition (8) which becomes

2na~c3f I 4>(r) dr = C. (42)

To obtain the solution of (41) we will use the method described in [6]. The method is
based on the following Gauss-Chebyshev integration formula for singular integrals
developed in [6]:

(43)(Ierl < 1)
! JI G(r) dr """ i G(rk)
n -1 (r-er)(l-r2)1/2 - k=1 n(rk-er)'

where G(r) satisfies a Holder condition in the closed interval -1 ~ r ~ 1, and rk and er

are the roots of appropriate Chebyshev polynomials given by

n
T,,(rk) 0, rk = cos "2-(2k -1), (k = 1, ... , n)

n

nr
er = cos~,

n
(r = 1, ... , n - 1).

(44)

Expressing now the solution of (41) as [see, (28) and (39)]

G(r)
4>(r) = (l-r2)!

and using the ordinary Gauss-Chebyshev integration formula [7, 8]

! JI f(r, e) dr """ i f(rk> e)
n _ 1 (l - r 2)!- - In'

(45)

(46)

to evaluate the second integral in (41), we obtain

(47)(r = 1, ... , n - 1).n 1 [1 ]L -G(rk) --;:+nh(e" rk) :::::: -/12AS 1(er),
k= 1 n rk "'r

Equation (47) provides (n -1) linear algebraic equations for the unknowns G(r I)"" ,G(rn).

The nth equation is obtained from (42) which can be written as

(48)

After evaluating G(r), the interface shear stress p(t) and the stress intensity factor k may be
obtained from

cG(t/c)
p(t) = (C 2 _t2 )1-' (-c < t < c)

k = lim[2(c-t)]1-p(t) = c1-G(1),
t .... c

(49)
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In solving the anti-symmetric problem the only change will be in the expression of the
Fredholm kernel, h(~, r) and the right-hand side 0£(41), otherwise, the procedure remains
the same. The development of the Gauss-Chebyshev integration formula for singular
integrals, (43), is based on the fact that the fundamental solution, w(t) = (I r 2 )-!,ofthe
dominant part of the integral equation is the weight function ofthe Chebyshev polynomials
T,,(r). Thus, if the bounded function can be expressed as

p

G(r) = LB j 0{r),
o

p < n, (-I<r<1) (50)

it can be proved that [6] the integration formula is exact for values of ~ = ~" Un-1(~r) = O.
For b c, the dominant part of the singular integral equation is shown in (27). In

terms of dimensionless variables defined by (40) the fundamental solution of the integral
equation is [see (28) and (37)]

w(r) = (I-r2 )-y, cOSJr}' = A, (I < r < I). (51)

The fundamental solution, w(r), given by (51) is the weight function of the Jacobi poly
nomials p~ y.- y)(r), of which}' = i described above is a special case. Hence, the method of
solution of(22) will be similar to that of (41) mentioned previously. Since the separation of
the dominant part of the singular integral equations [see (27)] serves no specific purpose
other than obtaining the characteristic equation and finding the fundamental solution,
the method can be applied to the equation in its original form, (22), which in terms of the
quantities defined by (40), may be expressed as

j rr }
1 1 cot "2b(t ~)

~I <{>(r)dr+~I <{>(t) 0 dr
rr -1 r- 2bo/12 -1 rr ¥

cosec 2b
o
(r ,;)

(-I < ~ < 1). (52)

The basic formula, known as the Gauss-Jacobi integration formula [7,8], which will
be used to solve (52) is

[0 < (IY.., 13) < I] (53)

where rk are the roots of

(k = I, ... , n) (54)

and the weighting constants are given by

2n -IY.. 13 + 2 r(n IY.. + l)r(n- 13 + 1) 2- a
- P

(n+ 1) !(n -IY.. - 13 + 1) r(n -IY..- 13 + 1) p~-a. P)(rk)p~/i-p)(rkr

Thus, defining

(55)

(56)
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(r=I, ... ,n-1)

103

(57)

where ~r are now the roots oft

P~l_-{l-Y)(~r) = 0, (r= 1, ... ,n-l). (58)

Again, (52) is subject to the equilibrium condition (42), which may be written as

n C
I AkG(rk) = -22'

1 na c
(59)

Equations (57) and (59) provide n equations for the unknowns G(r), (j = 1, ... , n).
In this problem too one can define a "stress intensity factor", k' describing the stresses

in the close neighborhood of the singular points such that

k'
p(x) ~ (2p)Y

where p = c-x is very small compared to c. Thus, from (56), (40) and (60) we obtain

c2YG(tlc)
p(t) = (c2 _ t2)Y

k' = lim[2(c - t)]Yp(t) = cYG(1).

After p(t) is determined, (11), (12) and (18) give the complete solution of the problem.

(60)

(61)

6. NUMERICAL RESULTS AND DISCUSSION

The numerical results obtained from the solution of (47) and (57) are shown in Figs.
3-10. In the shaft problem (Fig. 1) the external loads are assumed to be torques applied to
the body at sufficient distances away from the contact area, r = a, -c < x < c, so that the
assumptions regarding the axial symmetry and infinite dimensions are justified. In the
symmetric problem each side of the shaft is subjected to a torque, Cj2. Thus, in this case the
input functionfl(x) is zero [see, (3) and (10), and the insert in Fig. 3]. In the anti-symmetric
problem the external loads are the torques - Cj2 and C/2 applied to opposite ends of the
shaft. Hence, the total torque transmitted through the contact area is zero and the equi
librium equations (48) and (59) become homogeneous. In this case, however, the input
function f2(X) defined by (10) and (3) is

C
- fldix) = -3 . (62)

na

t See [7] for the computer programs giving the roots of (54) and (58). Also see [7,8] for the error estimates
in (53) and (46).
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.Q..= I Ie .

2.0

p(x)

Po

1.0

2b 2

o 0.2 0.4

x/e

0.6 0.8 1.0

FIG. 3. Contact stress for the shaft under symmetric loading; /1.2//1.1 = 0·345, y = 0·23317.

5.0

4.0

3.0

p(x)

PO
2.0

1.0

o
x/e

FIG. 4. Contact stress for the shaft under anti-symmetric (C 1 = - C2) and non-symmetric (C 1 = C, C2 = 0)
loading; /1.2//1.1 = 0·345. y = 0·23317.
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4.0

k'
Po e Y

---p(x}=ph}

---- pIx )=-p(-x}

3.0

2.0

1.0 o=(D

2.01.50.5o 1.0

ole

FIG. 5. Stress intensity factor vs. the shaft radius; b = e,1I2/1I1 = 0·345, y = 0·23317.

In Figs. 3-6 the results art. given in dimensionless form by introducing a normalizing
constant stress Po defined by

C
Po = 2n2a2c' (63)

In the anti-plane shear problem of the bonded strips (Figs. 7-10) the normalizing stress
is Plnc, P being the total shear load (per unit thickness in z direction) transmitted through
the contact area y = 0, - c < x < c (Fig. 2). The choice of these normalizing stresses is
based on the fact that in the elementary case of the anti-plane shear loading of two half
planes bonded along y = 0, -c < x < C, the stress intensity factor ratio kIPoJ(c) =

nJ(c)kIP is unity·t

1.3
b/c = co

1.2
2b

k 1- -I
Po,/C

1.1

e/2 C/2

1.0
I 2 3 4 5

b/c

FIG. 6. Stress intensity factor vs. h/e; a/e = 1, liz/III = 0·345, y = 0·23317.

t It should be pointed out that Po is not the average stress on the contact area. The average stress in both
cases is p., nPo/2.
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FIG. 7. Stress intensity factor vs. modulus ratio in bonded strips under symmetric anti-plane shear
loading;b./c = 5·0,b 2/c = 1·5.

Even though in all cases considered the contact stresses were obtained, in presenting
the numerical results in this paper the main emphasis will be on the stress intensity factors
k and k' [see, (49) and (61)], as they fully describe the stress state around the structurally
critical locations, namely, the singular points. However, to give an idea about the distribu
tion ofthe contact shear, some sample results are shown in Figs. 3 and 4. Figure 3 shows the
contact stresses for the shaft subjected to symmetric torques C/2. The results are given for
b = e and b = l·le, and for 112/111 = 0·345. Figure 4 shoNs the results for the anti-symmetric
loading C 1 = C/2 = - C2' and the nonsymmetric loading in which the torque C is applied

1.6
.".

2

1.5

1.0

k '

(.f.)e Y
7fe

0.9

---- ----:::.......«=--- ---

--- b l Ie = CD

0.8
----bile =3.0

2.0
0.7 l...--'-_-"-_.l...----'-_-'-_-'-------'_---L_...I..----L

o

FIG. 8. Stress intensity factor vs. J.l2/J.I, in bonded strips under symmetric anti-plane shear loading;
b2 = c,b, > c.
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FIG. 9. Stress intensity factor ys. bile in bonded strips under symmetric anti-plane shear loading;
/12//11 = 1/21·7.

to the shaft on one side only. This last result is obtained through the superposition of the
symmetric and anti-symmetric contact stresses given in Figs. 3 and 4.

Figure 5 shows the stress intensity factor ratio k'lpocY as a function of alc for the sym
metric [i.e. C 1 = Cz = C/2, p(x) = p( -x)] and for the anti-symmetric [i.e. C 1 = -Cz =
C/2, p(x) = - p( - x)] problems with b = c and J1.z1J1.1 = 0·345. The figure also shows the
asymptotic value for alc -+ 00 obtained from the anti-plane shear problem (see Fig. 8).
Note that for constant c, Po ~ C/az [see (63)]. Thus, for constant C and c, the values on
Fig. 5 should be multiplied by llaz to obtain k'. This means that, even though there is a
slight decrease in the stress intensity factor ratio for the anti-symmetric case as alc decreases,
in both cases k' would rapidly increase as alc -+ O.

0.9

k'

65432
0"-----'---'--.1...---'----'---'-----'-----'----'--'---

I

bile

FIG. 10. Stress intensity factor YS. bl/e in bonded strips under symmetric anti-plane shear loading;
b2 = e, /12//11 = 1/21·7.
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For the symmetric problem in the shaft and for h > e, a/e 1 and P2/PI 0·345 the
variation of the stress intensity factor ratio k/po.j(e) with h/e is shown in Fig. 6. It is seen
that the stress intensity factor is practically independent of b/e for b > 2e. For b < 2e. k
decreases rather rapidly with decreasing b. and in the limiting case of b = e. since p(x) ~
(e 2

- x 2
)- i'. 0 < y < ! and k is defined by (49) where y = !. in this graph k will go to zero.

Figure 7 shows the stress intensity factor ratio k/(P/n.j(e» as a function of P2/PI (Fig. 2)
in bonded strips under (symmetric) anti-plane shear loading. For this example the widths of
the strips are constant (bde 5·0 and b2/e 1·5) and P is the total load applied to the
strips in z direction away from the contact area. In this case the limiting values of k for
Il2/PI = 00 and P2/PI = 0 are obtained from the closed solution for the infinite strip of
width 2b with symmetric edge cracks given by [9] t

p(x)
P i( )1ne . 2 ne . 2 nx
2b cos 2b I sm 2b - sm 2b . (64)

The results for the limiting case of b = e in the symmetric problem are shown in Fig. 8.
Note that y is a function of P2/PI, [i.e. cosny = 1/(1+P2/PI)] varying from y = 0 for
P2/PI = 0 to Y = ! for P2/PI 00. The asymptotic values of k' for P2 = 00 are obtained
from the closed form solution (64). The solution for III = ex) is simply p(x) = P/2e. In this
case since y 0, this is also the value of k' [see (61)]. Thus, for P2/PI --40 the limiting value
of k'/(ei'P/ne) will be n/2.

Figures 9 and 10 show the variation of the stress intensity factor with bde for P2/PI
1/21·7 and for b2/e = 5,1·5 and 1. Since for b2 > e and hi = e, p(x) ~ (e 2 _t2

)-;", cos y' =
1/(1 +lltlP2), 0 < y' <!. k shown in Fig. 9 will go to zero as hi --4 e. Similarly, since for
b2 = e = b l , p(x) is bounded at +e, k' shown in Fig. 10 will also go to zero as hi --4 e.

Ifthe contact between the shaft and the disk is accomplished through shrink-fit, in the
neighborhood of the singular points a state of plane strain prevails which has to be super
imposed on the solution given in this paper. At present, the complete solution of the prob
lem is not available. However, in the plane strain case the contact stresses around the
singular point, x = e are known to be of the form [10]

(65)

where FI and F1 are bounded and are functions of elastic constants, dimensions and the
external loads. The power of the singularity. w, is a function of the elastic constants only.
For the particular case of VI = V2 = 0·2, Fig. 11 shows the variation of was well as ofy with
P2/J.lI (see [10]). If we assume that the elasticity solution is applicable and there is a con
stant coefficient of friction between the contacting surfaces, it is clear that partial slip may
take place on the contact area as the torque is increased above a certain value which is
proportional to the shrink-fit clearance. Figure 11 gives a qualitative idea about the nature
of this phenomenon. For 1l2/lll < 9, since w is real and greater than y, the possibility of
slip initiating at the ends x = +c will be small. For P2/J.lI > 10, w is complex, meaning that
the plane strain problem has an oscillating singularity. Furthermore, in this range since
1] ~ Re w (again, depending on the torque-elearance ratio). some slip would almost cer
tainly take place near the corners.

t The closed form solulion for Ihis problem can also be obtained by using the method given in this paper.
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FIG. 11. Variation of the power of singularity in plane strain (w) and in anti-plane shear (y) problems
as functions of fl.2/fl.,.
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A6cTPaKT HccneAyeTc~ Kpy'leHHe 6eCKOHe'lHO AnHHHoro ynpyroro Bana, npHcoeAHHeHHoro K ynpyroMy
A11CKy KOHe'lHOH WHpHHbl H C pa'HblMI1 ynpyrHMI1 nOCTO~HHbIMH.

KOHTaKT MOlKeT peaJlH'OBaTcH nyTeM npHCOeAI1HeHH~ HJlH rOpH'lenpeCCoBoH nocaAKH. CHa'laJla AaeTc~

(j:lOpMyna o6weH ,aAa'lH AJI~ oceCHMMeTpH'leCCHX KpaeBblX TpeUlHH Ha nJlOwaAH KOHTaKTa. OKa'bIBaeTc~,

'ITO peweHHe CBOAHTC~ K CHHrYJl~pHOMY HHTerpaJlbHoMy ypaBHHHI110, c npoCToH cHHryn~pHocTblO Tl1na
KOMH.

B npeAenbHOM cny'lae, KorAa KOHTaKT cyweCTByeT BAonb BceH WHpHHbl AHCKa, TorAa npe06JlaAalOWHM
~ilPOM HHTerpailbHoro ypaBHeHH~ ~Bn~eTC~ o606weHHoe ~APO Tl1na KOMH. PeweHHe HMeeT
cI1HrYJl~pHpCTb ljJOPMbl (C2 _X2)'y, rAe 2(' WHpHHa AHCKa 11 0 Y ~. )laeTcH pHA 'lHCJlOBbIX npHMepoB
CKpaeBblMI1 TpeWI1HaMH HJlH 6e, HHX, nOA BJlHHHHeM CHMMeTpH'leCKOH HAH aHTHceMMeTpH'leCKoi\ BHeUlHeH
Harpy'KH. JaTeM, paCCMaTpHBaeTC~ ,aAa'la KpyYeHH~, a HMeHHO, ,aAa'la AByX nOJly6ecKOHe'lHbIX nOJlOC,
nOil BnHHHHeM aHTH-nnOCKOH Harpy,KH CilBHra. BHOBb, AaIOTC~ pe'yJlbTaTbl p~Aa 'lHCJlOBbIX npHMepOB
C uenblO YKa,aHH~ J<jJljJeKTa reOMeTpHI1 11 CBOHCTB MaTepHana Ha ljJaKTOp HHTeHCHBHOCTH Hanp~lKeHHIl.


