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THE TORSION PROBLEM OF A DISK
BONDED TO A DISSIMILAR SHAFTY

F. Erpogan and G. D. Gurta

Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania

Abstract—The torsion of an infinitely long elastic shaft bonded to an elastic disk of finite width and of different
elastic constants is considered. The contact may be accomplished through bonding or shrink-fit. First the general
problem with the axisymmetric edge cracks on the contact area is formulated. This problem isshown to reduce toa
singular integral equation with a simple Cauchy-type singularity. In limit, when the contact is along the entire
width of the disk, it is shown that the dominant kernel of the integral equation is of generalized Cauchy-type
and the solution has a singularity of the form {c? —x?) "7, where 2¢ is the width of the disk and 0 < y < }. A series
of numerical examples is worked out with or without the edge cracks and under symmetric and anti-symmetric
external loads. A variation of the torsion problem, namely, the problem of two semi-infinite strips under anti-plane
shear loading is then considered. Again, the results of a series of numerical examples are given to show the effect
of the geometry and the material properties on the stress intensity factor.

1. INTRODUCTION

IN THIS paper we consider the problem of load transfer from an elastic shaft to an elastic
circular disk (Fig. 1). The external loads are assumed to be torques, circumferential body
forces, or circumferential tractions applied to the disk and the shaft in an axially symmetric
manner. That is, the problem is one of torsion. The outer radius of the disk and the length of
the shaft are sufficiently large in comparison with the radius of the shaft and the thickness of
the disk so that, in formulating the problem it will be assumed that these dimensions are
infinite. The contact between the disk and the shaft may be accomplished through shrink
fit or bonding. In either case only the torsion problem under the condition of perfect
adhesion will be considered.

The special case of infinitely wide disk was considered in Ref. {1]. In this paper first it
will be assumed that the thickness of the disk 2b is greater than the length 2¢ of the contact
area in x direction (Fig. 1). The configuration without the edge notches, i.e. the case of
b = ¢, will then be considered. In presenting the numerical results the emphasis will be on
the evaluation of the stress concentration as a function of the relative dimensions, b/c and
a/c, and the modulus ratio u,/u,, where a is the radius of the shaft and u, and y, are,
respectively, the shear moduli of the shaft and the disk. The problem will be solved under
symmetric and anti-symmetric loading conditions. In the former case p(x) = p(—x} and
in the latter p(x) = — p(—x), where p(x) = 1,¢(a, x) is the contact stress. The solution under
a more general axisymmetric (torsional) loading may be obtained as a proper super-
position of these two solutions.

In the special case of infinite shaft radius the problem reduces to one of anti-plane shear.
The solution of this problem will be given under the more general condition that the
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Fi1G. 1. The geometry of the circular shaft bonded or shrink-fit to a disk.

thicknesses of both materials are finite (Fig. 2). It should be pointed out that in both
problems, since under the symmetric loading x = 0 is a plane of symmetry on which the
traction 1,9, (i = 1,2) vanishes, the symmetric solution given in this paper is valid also
for one half of the composite media shown in Figs. 1(a) and 2 [see, for example, Fig. 1(b)].

2. DERIVATION OF THE INTEGRAL EQUATIONS

Consider an infinitely long shaft of radius a and shear modulus g, bonded or shrink-fit
to an infinite disk of width 2b and shear modulus g, (Fig. 1). Let the axial length of the
contact area be 2¢ where ¢ < b. Let all the external loads act in #-direction and be dis-
tributed in an axially symmetric manner. Thus, the problem is one of torsion and the
#-components u,(r, x) and u,(r, x) of the displacement vectors in the shaft and the disk,
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FiG. 2. Bonded semi-infinite strips under anti-plane shear loading.
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respectively, are the only unknown functions, which satisfy the following differential
equation:

Dot St S S Y | (i=Lr<a;i=2r>a. n
It will be assumed that the torsion problems for the disk and the shaft have been sepa-
rately solved under the external loads applied to the disk and the shaft by ignoring the

adhesion between the two materials. Let 1?(r, x), (i = 1, 2) be the displacements correspond-
ing to these solutions, and let

f(x) = —%[u‘z’(a+0, x)—ul(a—0, x)], (~c < x <o) 2

The final solution will then be P +u;, (i = 1,2) where u, and u, are the displacements
obtained from (1) under the following boundary and continuity conditions:

;;[uz(a+0, x)—u{a—0,x)] = f(x), {(—c<x<c) (3}
T1r6(0 X) = T34a, x) = p(x),  (—c<x <) 4
Tlr@(a’ X) = 0) lx! >c (5)
Told, X} = 0, c<lxl<b 6}
T, FD) =0,  (r>a) (7)
fc 2na’p(x)dx = C. (8)

Here p(x) is the (unknown) interface shear stress and C is the torque transmitted from the
shaft to the disk. The two nonvanishing components of the stress vector are given by

aui ui aui T
Tirg = i('a—’:‘“?)’ Tiox = ﬂia, (i=1,2) %)

Since x = 0 is a plane of geometric symmetry, by writing
Sx) = filx}+1(x)
[ilx) = [fx)=f(=x))/2,  folx) = [f)+f(—x)]}/2.

The solution can be expressed as the sum of a symmetric solution, ufr, x) = ufr, —x),
(i = 1,2), p(x} = p{—x) obtained from (1}{9) by using the input f,(x} and C, and an anti-
symmetric solution, uir, x) = —ufr, —x), (i = 1,2), p{x) = —p(—x) obtained from the
input function f,(t).

The solution of (1) for the shaft and the disk satisfying the conditions of regularity at
r = 0and r = o0, respectively, may be expressed as

(10)

mmn=§ﬂlwmmmmMa an

us(r, x) = 3 BoK (o)) (12)
1
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where the function A(a) and the constants B, are unknown and the cosine and sine kernels
correspond to the symmetric and the anti-symmetric problems, respectively. From (7),
(9) and (12) we find

{nn/b, (symmetric problem), n=12,..) @3)
= 3
(2n— 1)w/2b (anti-symmetric problem), (n=12..)
From (11), (12) and (9), the boundary conditions (3}+6) may now be expressed as
—§in &, X 2 sin ox
rll:l;lo Z B,a,K ( ){ cos oz,,x}“ rllam(); A(a)ozl,(ar){ cos ax} da
J1(x)
= (Ixf < ¢) 14
{ £ (14
2,u1 J‘ €OS o i €OS o, X
Yol do = —
Al (aa){sin ax } o K2 12 B, K Z(ana){sin o }
=p(x), (xl <o) (15)
2
s f A®) oc[z(oca){ ;‘} de=0, (x>0 (16)
.3 B,.anKz(ana){°.°s “"x} =0, (c<lxl<b) (17)
T sin o, x

The dual series-integral equations (14)(17) may easily be reduced to a singular integral
equation for the unknown function p(x) as follows: first from (15)17) we obtain

1 ¢ cos ot
2 (o) = Uy, (xa) J;) pm{sin cxt} dr

2 ¢ CoS ot
B,=—-————— mrd
o bu, K (0,a) fo P(l‘){sin “nt} ;

Then, substituting (18) into (14) and using the symmetry property of p(t) we find

(18)

. ! ¢ K (or) . 1 ¢ I (ary .
r—l»l:Eothz . 1) dt ZK:( na )sm a(t—x) + rll:rjoa _cp(t) dr J;) Iz(oca)sm o(t—x) da
—~fi(x)
= . 1
{ P (Ix| < ¢) (19)

Equation (13) s still valid for a, appearing in (19). Note that for b — 0, 1/b — da/m and the
kernel in the first term of (19) reduces to that found in Ref. [1].

Fort = x thekernelsin (19) are divergent. To separate these singular parts of the kernels
we let r = a+ ¢ in the first term and r = a—¢ in the second term of (19), where ¢ is a small
positive constant and note that for large values of « and «,,

I(xa — ag)
I(oa)

—&nt
)

Ki(ona + os8)

K (o) =" (20)
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We now add and subtract (20) to the integrands in (19) and use the following relations to
evaluate the singular kernels {2, 3]

lim | p(6 dtf e *sinaft —x)do = f —g@—dt
=0 J [} —e X
- (21)
> —pn o _ sin
e =Y ey
Making use of (21}, (19) may be expressed as
7
. c cot —(t — x) .
lf-ﬂﬂm+‘“ e m+f pOk(z, x) dt
Toel=x 2bz J-c cosec fw(t— ) o
Zb X
_ (x
:{ mh) <o (22)
—py fo(x)
_ 1 ®© Il(aa)_ . _
k(t, x) = tho (Iz(aa) 1) sin aft — x) de
B o [ Ki(2a) ) .
— ~ 1} sin o, (t —x). 23
bu, T (Kz(ot,,a) ( ) &)

The kernel given by (23) is bounded for all values of ¢ and x in (—¢, ¢) where, because of
uniform convergence, the limit can be (and is) put under the integral and summation
signs.

For b > c¢thekernel in the second term of (22) has a singularity of the form 1/t — x}, and
hence (22)is a simple singular integral equation. In this case the function p(t) has an integrable
singularity at F ¢ of the form (¢? —t2)~*/%. The case of b = ¢ will be discussed in Section 4.
In either case, (22) must be solved subject to the condition (8).

3. INTEGRAL EQUATION FOR BONDED STRIPS

The formulation given in the previous section may be used to derive the integral
equation for the anti-plane shear problem of two bonded semi-infinite strips shown in
Fig. 2. For a —» o the Fredholm kernel, k(x, t) given by (23) vanishes, and (22) gives the
integral equation for a strip bonded to a half plane. If the width of the medium 1 is also
finite, (22) may easily be modified as follows:

. coti-g- (t—x) e cot 52— (1)
0 ! de+ f (1) ’ de
2b1p ‘f M cosec ——(t —x) ). cosec - —(t—x)
26, 2b,

_ —f1(x)
~{_f2(x) (X < ¢ (24)
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where, again, the upper and lower kernels and the right-hand side correspond to symmetric
and anti-symmetric problems, respectively. For b, > ¢, b, > ¢, the kernel of (24) has a
Cauchy-type singularity. The special casesof b, = ¢ < b,and b, = ¢ = b, will be discussed
in the next section. The integral equation (24} will be solved subject to the following con-
dition

f pitydt = P (25)

where P is the resultant anti-plane shear load per unit thickness in z-direction {Fig. 2).

4. THE CASE OF b= ¢

Referring to Fig. 1, if there are no edge cracks on the interface, that is,if b = ¢, the kernels
in the second term of (22) become unbounded at t—x = F2¢, as well as at t = x. Thus,
separating the singular parts, these kernels may be expressed as

1 1 1 1 1
- cotﬁ(t-—x) = ~( + + ) +ky(x, 1),

2c 2c m\t—x t—z; t—z,
1 w 1 i 1
— X)) = — - - ko(x, t 26
5 cosec 2('([ x) n(t—x P— t—zz) +kylx, 1), (26)

z, = x—2¢ Zy = Xx+2¢ —3c <z, < —0,¢ <z, < 3¢,

where k, and k, are bounded in the closed interval [—e, c]. Substituting from (26) into (22),
the integral equation for the symmetric problem becomes
1 A p)

¢ i
%%f_cp({)(r-x+r—zl+z-z2) de=Fx),  (-e<x<o) 27)

where

A= g +pa)
F(x) = ‘“/szdx)—lf_ [z_?k(% )+ k(x, l)} p(t) de.

Since k and k, are bounded and p is integrable, F(x) is a bounded function in the closed
interval [ —¢, c].
We will now assume that p(r) has an integrable singularity at t = Fc, and can be
expressed as follows [4, chapter 4]:
g(t) gltye™”
= = s th<c¢ 28
W= = garge M<9 (28)
where y = a+if, 0 < a < 1, g(f) satisfies a Holder condition in the closed interval —c
<t < ¢, and (¢* —c?) is any definite branch which varies continuously on —e¢ < ¢ < ¢.
Consider the following sectionally holomorphic function

_lem L0 s@e™dr 2
Pl2) = nf_cz—zd‘ - nf_c(t—c))’(t+c)7(t—z) (29)
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Following [4, chapter 4], after examining the singular behavior of ¢(z) near the end points
F ¢ it may be expressed as
PO G R S
(2¢) sinmy (z+c¢) (2cVsinny (z—c)

+ $olz). (30

The function ¢,(z) is bounded everywhere with the exception of the end points F¢ near
which it has the following behavior:

lol2) < 12_Ck k=12 ay<a ¢ = Fc (31

ol

where C, and «, are real constants. In particular, for z = x, —¢ < x < ¢ we have [4]

_Leoplyde  g(—c)cotny  glc) e cot my
P(x) = TCJLC —x Qc) (x+¢) 2 (x—cy

+P¥x), (—c < x < ¢} (32)
Near the end points ¢*{(x) behaves as
£k S
$¥(x) = !j)i ((Tz" (k=12), a<a ¢=7Fc (33)
v k

where ¢f*(x), (k = 1, 2) satisfies a Holder condition near and at the ends x = Fe.
Note that the points z, and z, are outside the cut —¢ < x < ¢. Hence at z; and z,
@(z) is holomorphic and may be expressed as

o) = (2c);) s::; Ci—:u?)? ?:z)
- g((ZZ)i) Einlny (("%x)—v+¢l(x—2C)' 9
#e) = — 5O S Erad N
(i(f))V smlm (cix +9alx+20). (39
The behavior of ¢, near z; = —cand that of ¢, near z, = c are given by (31), elsewhere on

the cut ¢, and ¢, are bounded.
Substituting from (29), (32), (34} and (35) into (27) we obtain

g(-—c) cot wy __gi(l cot y N g(—c) 1 1
B (crxf Qo) femxp T OIS o 5 e—xy TAPx—29
go 1 L aba(x+20) = Fx), (Ix] < ). (36)

- (2¢) sinmy {c +x)?

Here, we recall that (27) was expressed for the symmetric problem, that is, p(t) = p(— 1)
or g(t) = g(—1). Using this symmetry property and noting that g(t) # 0 at t = Fc, from
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(36) first by multiplying through (c + x)” and substituting x = —¢, and then by multiplying
through (¢ —x)” and substituting x = ¢ we find

or
cosmy = A. {37)

From (37) it is seen that the power of the singularity, y is a real constant. The range of 1 is
0 < A= p,/(uy +p,) < 1, giving 0 < 7 < 4. The well-known limiting cases are ; = 1 for
(H2/py) = oc,and y = O for (uy/py) = 0.

In the anti-symmetric problem, from (22) and (26) it follows that on the left-hand side of
(27) and (36) the sign of 4 will be negative and the right-hand side will be replaced by
another bounded function. However, in this case p(t) = —p(—t) or g(c) = —g(—c), giving
again (37) as the characteristic equation for 7.

In the bonded strips (Fig. 2), the comparison of (24) and (22) indicates that for b, > c.
b, = c the dominant part of (27) remains unchanged ; hence, (37) is still valid. In addition
to b, = cif wealso let b, = ¢, from (24) and (26) we find

! AN I 1 1 . F1(X)
('u]-FE %fcp([)(t—.xit—zl il‘—-Z;) dt = {I;Z(x) (')(‘ < 1) (38)

where F; and F, are bounded in the closed interval |x| < ¢. Thus, from (27), (38) and (37)
it is seen that, in this case cos 7y = 1, or y = 0, meaning that at x = F¢, vy = 0 the stresses
are bounded.

Ifb > cin Fig. 1 and (22}, and b, > ¢. b, - ¢in Fig. 2 and (24), the only singular parts
of the cotangent and cosecant kernels will be 1/n(t —x). As a result, both in the symmetric
and in the anti-symmetric problem the dominant part of the integral equation (27) will
have only the simple Cauchy kernel 1/(t— x). In this case, following the analysis (27)—(37),
instead of (37) we obtain the characteristic equation giving y as

cotny =0,y =3 (39)

which is the well-known result [5].

5. SOLUTION OF THE INTEGRAL EQUATIONS

To solve the integral equations (22) and (24), we will first normalize the dimensions with
respect to ¢ by introducing the following quantities:

T = t/c, & = x/c, u = ac, U, = QuC, v, = ¢,
a, = ajc, b, = b/c, by = by/c, b,o = b,/c, 40)
p(t) = plct) = $(o), SAx) = s£8), (j=12)
Thus, for the symmetric problem, and for b > ¢ (22) may be expressed as

1" ¢()de

n)_, =&

1
+f HE DHD AT = —ppisy(@, (€ < 1) (41)
—1
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where

k{ct, c&)

1 Ciy
HE 1) = &) —— +
(&) [Zbo ( 9 n T—f] Hyt i
A= py/(py + ).
Equation (41} will be solved subject to the equilibrium condition (8) which becomes

1
27:a<2)c3f d(r)dr = C. {42)
-1

To obtain the solution of (41) we will use the method described in [6]. The method is
based on the following Gauss—Chebyshev integration formula for singular integrals
developed in [6]:

1 J” G(tydt N i G{(t,)
(=8 i N =1l — fr))
where G(t) satisfies a Holder condition in the closed interval —1 < t < 1, and 7, and &,
are the roots of appropriate Chebyshev polynomials given by

(&1 < 1 (43)

T() =0, 1= cosé%(zk—l), k=1,....n)

(44)
ar
U,_ (&) =0, ¢, -cos~;l— r=1,...,n—1).
Expressing now the solution of (41) as [see, (28) and (39)]
G(t)
P =5 _(1_2)% (45)
and using the ordinary Gauss—Chebyshev integration formula [7, 8]
P dr & fn. )
2 e =l Hw=0 (46)

to evaluate the second integral in (41), we obtain

Z G(rk [ ! ~F +7th(§,,1:k)] —yA8,(E,), r=1...,n—1). 47

Equation (47) provides {(n— 1) linear algebraic equations for the unknowns G(z,),. .., G{t,).
The nth equation is obtained from {42) which can be written as

2n%adc? Z G(rk = {48)

After evaluating G(7), the interface shear stress p(¢) and the stress intensity factor k may be
obtained from

cGlt/c)

plt) = PR

(—c<t<o)

3 N (49)
k = lim[2(c —t)]*p(t) = c2G(1).
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In solving the anti-symmetric problem the only change will be in the expression of the
Fredholm kernel, (¢, 7) and the right-hand side of (41), otherwise, the procedure remains
the same. The development of the Gauss—Chebyshev integration formula for singular
integrals, (43), is based on the fact that the fundamental solution, w(t) = {1 —12)" %, of the
dominant part of the integral equation is the weight function of the Chebyshev polynomials
T,(1). Thus, if the bounded function can be expressed as

GR) =S BT, p<n (-l<t<l) (50)
]

it can be proved that [6] the integration formula is exact for valuesof £ = { ., U, _ (£} = 0.

For b = ¢, the dominant part of the singular integral equation is shown in (27). In
terms of dimensionless variables defined by (40) the fundamental solution of the integral
equation is [see (28) and (37)]

wir)=(1-13)77,  cosmy=4, (—l<z1<]l) (51)

The fundamental solution, w(t), given by (51) is the weight function of the Jacobi poly-
nomials P, 7~ Y1), of which y = { described above is a special case. Hence, the method of
solution of (22) will be similar to that of (41) mentioned previously. Since the separation of
the dominant part of the singular integral equations [see (27}] serves no specific purpose
other than obtaining the characteristic equation and finding the fundamental solution,
the method can be applied to the equation in its original form, (22), which in terms of the
quantities defined by (40), may be expressed as

T
1 ; cot —(t—¢)
l ¢(T)df+ Hy f #(7) 2b, de
nJdoy =& 2bsus oy coseci( _y
TR
1 _
+J d(ok(cE, ct)e dt = { msild e o), (52)
-1 _ﬂxsz(‘f)

The basic formula, known as the Gauss—Jacobi integration formula {7, 8], which will
be used to solve (52) is

1 n
f [ dU-0 "+ P dr = Y 4S8, D<@p<1]  (53)
—1 k=1
where 1, are the roots of
Pﬁ,_“‘_m{rk) = 0, k=1,....n {54)

and the weighting constants are given by

Mm—a—f+2 Tn—a+DIn-F+1) 278

S+ Dln—a—B+1) Tn—a—f+1) P B 3P T Y (33)

Ak"-—-"

Thus, defining
P(1) = Gr)(1—1) 7% |t} < 1 (56)
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and using (53), (52) may be expressed as

cot —n~(1:j—é,)

- 1 Hy 2bo
£ 400 ey o, osee o)
by T
+ck(cf,,crj)] - {—”‘s‘(i’), r=1,..n—1) (57)
— 115,(¢,)

where £, are now the roots of¥
P17y = 0, (r=1,...,n—1). (58)

Again, (52) is subject to the equilibrium condition (42), which may be written as

> AG() = (59)
1

2na’c’

Equations (57) and (59) provide n equations for the unknowns G(t)),(j = 1,...,n).
In this problem too one can define a “‘stress intensity factor”, k’ describing the stresses

in the close neighborhood of the singular points such that

k(
X) ~ (60)
A (2p)
where p = ¢ —x is very small compared to c. Thus, from (56), (40) and (60) we obtain
c2'G(t/c)
p(t) = (cz——tzﬁ
(61)

k' = lim[2(c—O]'p(t) = ¢"G(1).

After p(t) is determined, (11), (12) and (18) give the complete solution of the problem.

6. NUMERICAL RESULTS AND DISCUSSION

The numerical results obtained from the solution of (47) and (57) are shown in Figs.
3-10. In the shaft problem (Fig. 1) the external loads are assumed to be torques applied to
the body at sufficient distances away from the contact area,r = a, —¢ < x < ¢, so that the
assumptions regarding the axial symmetry and infinite dimensions are justified. In the
symmetric problem each side of the shaft is subjected to a torque, C/2. Thus, in this case the
input function f,(x) is zero [see, (3) and (10), and the insert in Fig. 3]. In the anti-symmetric
problem the external loads are the torques — C/2 and C/2 applied to opposite ends of the
shaft. Hence, the total torque transmitted through the contact area is zero and the equi-
librium equations (48) and (59) become homogeneous. In this case, however, the input
function f,(x) defined by (10) and (3) is

C
= fo(x) = poo B (62)

1 See [7] for the computer programs giving the roots of (54) and (58). Also see [7, 8] for the error estimates
in (53) and (46).
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x/c¢

FiG. 3. Contact stress for the shaft under symmetric loading; u,/u, = 0345,y = 0-23317.

5.0 24 2

p(x)

Po

FiG. 4. Contact stress for the shaft under anti-symmetric(C; = —C,)and non-symmetric(C, = C,C, =0)
loading; pa/u, = 0-345,y = 0:23317.
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4.0
———pix}=pl-x)
i ————px)==p(x)
3.0
kl
poc” -
2.0
10— ~ _ _
1 I H l 1 l L } i
o} 0.5 1.0 1.5 2.0

alc
F1G. 5. Stress intensity factor vs. the shaft radius; b = ¢, u,/u, = 0345,y = 0.23317.

In Figs. 3-6 the results arc given in dimensionless form by introducing a normalizing
constant stress p, defined by

_ C
T 2ntaice

Po (63)
In the anti-plane shear problem of the bonded strips (Figs. 7-10) the normalizing stress
is P/mc, P being the total shear load (per unit thickness in z direction) transmitted through
the contact area y = 0, —¢ < x < ¢ (Fig. 2). The choice of these normalizing stresses is
based on the fact that in the elementary case of the anti-plane shear loading of two half
planes bonded along y =0, —c < x < ¢, the stress intensity factor ratio k/po./(c) =
n/(c)k/P is unity.}

L3
/b/c=€0
1.2 2b
k -——-—-————l
Po /e
i1
/ 19
\ 2¢ \
Cc/2 cs2
1.0 1 | I | 1 | 1
| 2 3 49 5
b/¢c

FiG. 6. Stress intensity factor vs. bfe; afe = 1, go/u, = 0-345, 7y = 0:23317.

1 It should be pointed out that p, is not the average stress on the contact area. The average stress in both
cases is p,, = npo/2.
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[P
I.0— Ho/p) =@
mJek
LN p
P [©]
L 2bz
=]  b=2c
o8 2p,
] ®p
0.7 ; | L l | | L | |
o) 2 4 6 8 10 12
Ko/ By

FiG. 7. Stress intensity factor vs. modulus ratio in bonded strips under symmetric anti-plane shear
loading; b,/c = 5-0,b,/c = 1.5.

Even though in all cases considered the contact stresses were obtained, in presenting
the numerical results in this paper the main emphasis will be on the stress intensity factors
k and k' [see, (49) and (61)], as they fully describe the stress state around the structurally
critical locations, namely, the singular points. However, to give an idea about the distribu-
tion of the contact shear, some sample results are shown in Figs. 3 and 4. Figure 3 shows the
contact stresses for the shaft subjected to symmetric torques C/2. The results are given for
b = candb = 1-1¢,and for u,/u,; = 0-345. Figure 4 shows the results for the anti-symmetric
loading C;, = C/2 = —C,, and the nonsymmetric loading in which the torque C is applied
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FIG. 8. Stress intensity factor vs. u,/u, in bonded strips under symmetric anti-plane shear loading;
b,=c¢,b;>c
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FI1G. 9. Stress intensity factor vs. b,/c in bonded strips under symmetric anti-plane shear loading;
Moy = 1/21-7.

to the shaft on one side only. This last result is obtained through the superposition of the
symmetric and anti-symmetric contact stresses given in Figs. 3 and 4.

Figure 5 shows the stress intensity factor ratio k'/pyc” as a function of a/c for the sym-
metric [i.e. C; = C, = C/2, p(x) = p(—x)] and for the anti-symmetric [ie. C, = —C, =
C/2, p(x) = —p(—x)] problems with b = ¢ and u,/u, = 0-345. The figure also shows the
asymptotic value for a/c — oo obtained from the anti-plane shear problem (see Fig. 8).
Note that for constant ¢, p, ~ C/a® (see (63)]. Thus, for constant C and c, the values on
Fig. 5 should be multiplied by 1/a* to obtain k". This means that, even though there is a
slight decrease in the stress intensity factor ratio for the anti-symmetric case as a/c decreases,
in both cases k’ would rapidly increase as a/c — 0.
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F1G. 10. Stress intensity factor vs. b;/c in bonded strips under symmetric anti-plane shear loading;
by = ¢, pafuy = 1/21-7.



108 F. ERDOGAN and G. D. GuprTA

For the symmetric problem in the shaft and for b > ¢, a/c = 1 and p,/p, = 0-345 the
variation of the stress intensity factor ratio k/py\/(c) with b/c is shown in Fig. 6. It is seen
that the stress intensity factor is practically independent of b/c for b > 2¢. For b < 2¢, k
decreases rather rapidly with decreasing b, and in the limiting case of b = ¢, since p(x} ~
(c?=x*)77,0 < y < +and k is defined by (49) where y = 1, in this graph k will go to zero.

Figure 7 shows the stress intensity factor ratio k/(P/n\/(c)) as a function of u,/u, (Fig. 2)
in bonded strips under (symmetric) anti-plane shear loading. For this example the widths of
the strips are constant (b,/c = 50 and b,/c = 1.5) and P is the total load applied to the
strips in z direction away from the contact area. In this case the limiting values of k for
ta/i, = oo and p,/u, = 0 are obtained from the closed solution for the infinite strip of
width 2b with symmetric edge cracks given by [9]

P me o yme o mx)E
px) = 2bcos 55 /(sm % sin Zb) ) (64)

The results for the limiting case of b = ¢ in the symmetric problem are shown in Fig. 8.
Note that y is a function of u,/u,, [te. cos ny = H/(1+u,/p,)] varying from y = 0 for
Us/u; = 0toy = 3 for uy/u, = oo. The asymptotic values of k' for u, = oo are obtained
from the closed form solution (64). The solution for y; = oo is simply p(x) = P/2c¢. In this
case since y = 0, this is also the value of k' [see (61)]. Thus, for u,/u, — 0 the limiting value
of kK'/(c?P/rc) will be =/2.

Figures 9 and 10 show the variation of the stress intensity factor with b, /c for u,/u, =
1/21.7 and for b,/c = 5, 1-5and 1. Since for b, > cand b, = ¢, p(x) ~ (¢*—1*)"",cosy’ =
11+ 1, /1), 0 <y < 4, k shown in Fig. 9 will go to zero as b, — c¢. Similarly, since for
b, = ¢ = b, p{x) is bounded at Fc¢, k' shown in Fig. 10 will also go to zero as b, — c.

If the contact between the shaft and the disk is accomplished through shrink-fit, in the
neighborhood of the singular points a state of plane strain prevails which has to be super-
imposed on the solution given in this paper. At present, the complete solution of the prob-
lem is not available. However, in the plane strain case the contact stresses around the
singular point, x = ¢ are known to be of the form [10]

Fy L)

{(c—x)” + {c—x)® (63)

rrr + itrx ~

where F, and F, are bounded and are functions of elastic constants, dimensions and the
external loads. The power of the singularity, w, is a function of the elastic constants only.
For the particular case of v, = v, = 0-2, Fig. 11 shows the variation of  as well as of y with
uo/u, (see [10)). If we assume that the elasticity solution is applicable and there is a con-
stant coeflicient of friction between the contacting surfaces, it is clear that partial slip may
take place on the contact area as the torque is increased above a certain value which is
proportional to the shrink-fit clearance. Figure 11 gives a qualitative idea about the nature
of this phenomenon. For u,/u, < 9, since w is real and greater than y, the possibility of
slip initiating at the ends x = T ¢ will be small. For g,/u, > 10, wis complex, meaning that
the plane strain problem has an oscillating singularity. Furthermore, in this range since
y < Re w (again, depending on the torque—clearance ratio), some slip would almost cer-
tainly take place near the corners.

+ The closed form solution for this problem can also be obtained by using the method given in this paper.
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FIG. 11. Variation of the power of singularity in plane strain (w) and in anti-plane shear (y) problems
as functions of u,/u, .
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AlcTpakt HMccneayetca kpyveHue OECKOHEYHO ANTMHHOIO YNPYIroro Baja, NPUCOEAMHEHHOTO K YIIPYroMy
JINCKY KOHEYHOMW WMPUHBE U C PAIHBIMU YIIPYTHUMU TOCTOAHHBIMH.

KOHTaKT MOXET peann3oBaTcs NYTEM NPUCOSAUHEHUSE MIIM TOPAYETIPECCOBOM nocaaku. CHavana naétcs
(opmyna obuieil 3aaaumn A8 OCECHMMETPUYECCHX KPAEBbIX TPELUKWH HA Nuiolanmu KouTakra. Oxa3biBaercs,
4TO pelleHue CBOANTCA K CHHIYISIPHOMY MHTErPanbHOMY YPaBHUHHUIO, C NMPOCTONH CHHIYISIPHOCTBIO THNA
Komu.

B npeaensHOM ciiyyae, KOria KOHTAKT CYLLECTBYET BAO/Ib BCEH LIMPHHBL ZMCKA, TOrAa npeobiaaaroimm
ALPOM MHTErpanbHOIO YpaBHEHUs aBiasieTca o00o0OlIeHHOe saapo Tuma Kowmu. Peurenne umeer
CUHIYJAPHPCTL GopMbl (¢? —x?) 7Y, rae 2¢ wupuna aucka 0 -y - }. Jlaércsa psaa YMCIIOBbIX IPUMEDPOB
C KpPaeBbIMH TPELLIMHAMM UIIH B3 HUX, 10 BIAMAHUEM CUMMETPUYECKOH MW AHTHCEMMETPUYECKON BHELLHER
HArpy3Kku. 3aTem, paccMaTPUBAETCA 3a4ava Kpy4eHUs, a MMEHHO, 3a1a4a ABYX NOJ1yOeCKOHEUHBIX IMOJoC,
Noa BIUSHUEM AHTU-IUIOCKOH HATPY3KM CABMra. BHOBbL, JarOTCA Pe3yibTATh! Psaa YMCIAOBBIX MIPUMEDPOB
€ Uenbo ykazauus pdekta reoMeTpun U CBOIWCTB MaTeprana Ha GakTop WHTEHCUBROCTH HANPsXEHNH.



